Оптимизация инвестиционного портфеля по модели Марковица

ruticker 20.06.2017 15:35:00

В 1952 г. американский экономист Г. Марковиц опубликовал ста тью “ Portfolio Selection ”, которая легла в основу теории инвестиционного портфеля1 . Г. Марковиц исходил из предположения о том, что инвестирование рассматривается как однопериодовый процесс, т.е. полученный в результате инвестирования доход не реинвестируется. Другим важным исходным положением в теории Г. Марковица является идея об эффективности рынка ценных бумаг. Под эффективным рынком понимается такой рынок, на котором вся имеющаяся информация трансформируется в изменение котировок ценных бумаг; это рынок, который практически мгновенно реагирует на появление новой информации.

В своих теоретических исследованиях Марковиц полагал, что значения доходности ценных бумаг являются случайными величинами, распределенными по нормальному (Гауссовскому) закону. В этой связи Марковиц считал, что инвестор формируя свой портфель, оценивает лишь два показателя E ( r ) – ожидаемую доходность и σ стандартное отклонение как меру риска (только эти два показателя определяют плотность вероятности случайных чисел при нормальном распределении). Следовательно, инвестор должен оценить доходность и стандартное отклонение каждого портфеля и выбрать наилучший портфель, который больше всего удовлетворяет его желания – обеспечивает максимальную доходностьr при допустимом значении риска σ . Какой при этом конкретный портфель предпочтет инвестор, зависит от его оценки соотношения “доходность риск”.

Эффективные портфели. Цель любого инвестора – составить та кой портфель ценных бумаг, который бы давал максимально возможную отдачу с минимально допустимым риском. Раскроем прежде всего взаимосвязь эффекта корреляции и риска инвестиционного портфеля.

С равнение значений стандартных отклонений различных портфелей позволяет сделать два важных вывода: во-первых, при одних и тех же значениях ρ 1,2 разным портфелям соответствуют разные величины σ , то есть при изменении соотношения ценных бумаг в портфеле меняется и риск портфеля. Во-вторых, что более важно, для любого портфеля с понижением коэффициента корреляции уменьшается и риск портфеля (если, конечно портфель не состоит из одной ценной бумаги).

Если брать различные количества ценных бумаг (3, 4, 5, …, n ), имеющих любые по-парные коэффициенты доходностей в пределах от (1) до (+ 1), и создавать из них портфели, варьируя “вес” каждой ценной бумаги, то какому-то конкретному портфелю А будет соответствовать вполне определенное соотношение ожидаемой доходности E ( rA ) и риска (стандартное отклонение σ А ). Перенеся эти соотношения на координатную плоскость с осями E ( r ) и σ , получим точку А с координатами [ E ( rA ); σ A ] на рисунке 7.1:

п»ї

Для другого набора этих же ценных бумаг с определенным “весом” каждой бумаги получим другое соотношение ожидаемой доходности и риска (например, точка N на рис. 7.1). Можно показать, что из любого ограниченного набора ценных бумаг, выбранных инвестором, путем варьирования их “веса” можно получить бесконечное количество портфелей2 . Если для каждого из портфелей определить ожидаемую доходность и стандартное отклонение, отложить их на графике (рис. 7.1), то получим совокупность точек – зону, определяющую все возможные портфели для выбранного количества ценных бумаг.

Ключ к решению проблемы выбора оптимального портфеля лежит в теореме о существовании эффективного набора портфелей, так называемой границы эффективности. Суть теоремы сводится к выводу о том, что любой инвестор должен выбрать из всего бесконечного набора портфелей такой портфель, который:

1.     Обеспечивает максимальную ожидаемую доходность при каждом уровне риска.

2.     Обеспечивает минимальный риск для каждой величины ожидаемой доходности.

Иначе говоря, если инвестор выбрал n ценных бумаг со своими характеристиками [ E ( ri ); σ i ; σ ij ; ρ ij , где i , j = 1,2,…, n ], то найдется только одна комбинация ценных бумаг в портфеле, минимизирующая риск портфеля при каждом заданном значении ожидаемой доходности портфеля. Если обратиться к рисунку 7.1, то вывод теоремы сводится к тому, что какую бы величину ожидаемой доходности не определил инвестор (например, E ( rm ) на рис. 7.1), всегда путем перебора весов ценных бу маг портфеля можно найти такой портфель, при котором уровень риска достигает минимального значения (на рис. – точка М).

Набор портфелей, которые минимизируют уровень риска при каждой величине ожидаемой доходности, образует так называемую границу эффективности – на рис. 7.1 это линия R . Как видно из данного рисунка, при перемещении по границе вверх вправо величины E ( r ) и σ увеличиваются, а при движении вниз влево – уменьшаются.

Итак, эффективный портфель – это портфель, который обеспечивает минимальный риск при заданной величине E ( r ) и максимальную отдачу при заданном уровне риска.

Как отмечалось, на риск портфеля основное влияние оказывает степень корреляции доходностей входящих в портфель ценных бумаг – чем ниже уровень корреляции, то есть чем ближе коэффициент корреляции приближается к ( 1), тем ниже риск портфеля. Тогда можно пред положить, что путем диверсификации – изменения количества входящих в портфель ценных бумаг и их весов – инвестор способен снизить уровень риска портфеля, не изменяя при этом его ожидаемой доходности.

п»ї

Та часть риска портфеля, которая может быть устранена путем ди версификации, называется диверсифицируемым, или несистематическим риском. Доля же риска, которая не устранятся диверсификацией, носит название недиверсифицируемого, или систематического риска.

Общая постановка задачи нахождения границы эффективных портфелей. Если портфель состоит из более чем из 2 ценных бумаг, то для любого заданного уровня доходности существует бесконечное число портфелей, или, иными словами, можно сформулировать бесконечное количество портфелей, имеющих одну и ту же доходность.

Тогда задача инвестора сводится к следующему: из всего бесконечного набора портфелей с ожидаемой нормой отдачи E ( rn ) необходимо найти такой, который обеспечивал бы минимальный уровень риска. Иными словами, можно задачу инвестора свести к следующему:

необходимо найти минимальное значение дисперсий портфеля

 

Существуют три способа решения подобного рода задач – графический, математический и с использованием компьютерных программ.

Графический способ был предложен Г. Марковицем. Необходимо учитывать, что при n > 3 этот способ мало применим, поскольку не позволяет графически представить границу эффективных портфелей. Математический способ позволяет оптимизировать портфель, содержащий много больше ценных бумаг, и широко используется на практике. Наконец, с помощью специальных программ можно решать подобные задачи с дополнительными начальными условиями.

Итак, для решения задачи нахождения оптимального портфеля, содержащего n ценных бумаг, необходимо первоначально вычислить:

а) n значений ожидаемой доходности E ( ri ) , где i = 1, 2,…, n каждой ценной бумаги в портфеле;

б) n значений дисперсий σ 2 i каждой ценной бумаги;

в) n ( n 1)/2 значений ковариации σ i , j , где i , j = 1, 2,…, n .Способы их вычисления приведены ранее. Если подставить значения E ( ri ), σ i и σ i , j в уравнения (7.1) (7.3), то выясняется, что в этих уравнениях неизвестными оказываются только величины Wi – “веса” каждой ценной бумаги в портфеле. Следовательно, задача формирования оптимального портфеля изn акций, по сути дела, сводится к следующему: для выбранной величины доходности Е инвестор должен найти та кие значения Wi , при которых риск инвестиционного портфеля становится минимальным. Иначе говоря, для выбранного значения Е инвестор должен определить, какие суммы инвестиционных затрат необходимо направить на приобретение той или иной ценной бумаги, чтобы риск инвестиционного портфеля оказался минимальным.

Нахождение оптимального портфеля. В теории Марковица инвесторы стремятся сформировать портфель ценных бумаг, чтобы максимизировать получаемую полезность. Иными словами, каждый инвестор желает таким образом сформировать портфель, чтобы сочетание ожидаемой доходности E ( r ) и уровня риска σ портфеля приносило бы ему максимальное удовлетворение потребностей и минимизировало риск при желаемой доходности. Разные инвесторы имеют отличные друг от друга мнения об оптимальности сочетания E ( r ) и σ , поскольку отношение одного инвестора к риску не похоже на желание рисковать другого инвестора. Поэтому, говоря об оптимальном портфеле, надо иметь в виду, что эта категория сугубо индивидуальна, и оптимальные в иду, что эта категория сугубо индивидуальна, и оптимальные портфели разных инвесторов теоретически отличаются друг от друга. Тем не менее каждый оптимальный портфель непременно является эффективным , то есть инвесторы выбирают удовлетворяющий их (оптимальный) портфель из эффективных портфелей.


Назад

Залогинтесь, что бы оставить свой комментарий

Copyright © StockChart.ru developers team, 2011 - 2023. Сервис предоставляет широкий набор инструментов для анализа отечественного и зарубежных биржевых рынков. Вы должны иметь биржевой аккаунт для работы с сайтом. По вопросам работы сайта пишите support@ru-ticker.com